

he he bioratoire Décision et Information Pour les Systèmes de Production

"A mitigation tool to protect a home health care structure facing a hydrological disaster"

Alain Guinet, Houssem Barkaoui, Tao Wang & Eric Dubost

- Context
- State of the art
- Mitigation model
- Prospects

Context

State of the art

→ the optimization models are the most suitable when considering evacuation problem with resource distribution.

State of the art

- Our model is based on a real life scenario which has been defined with our partner: Soins et Santé. Therefore the model is well suited to the Home Health care practices.
- The improvement methods that we propose can be easily applied in the field.
- Our attention is focused on the patient evacuation and resource assignment.

Data:

- M: number of areas,
- T: number of studied periods,
- N: number of type of resources (doctors, nurses, etc.),
- K (i): number of resources of type i,
- Cap (h, i): capacity of resource h of type i per period,
- Wei (j): number of patients per area j,
- Evol (i,j,p): evolution rate for the accessibility of area j for the resource i on period p,

• Forecasted crisis modelling (Evol (i,j,p)):

Period/	24 Jan	25 Jan	26 Jan	27 Jan	28 Jan	29 Jan	30 Jan	31 Jan	1 Feb	2 Feb
District										
Area 1	0	0	0	0	0	0	0	1	-1	0
Area 2	0	0	0	0	1	1	1	1	-1	-1
Area 3	0	0	0	0	0	0	1	1	-1	-1
Area 4	0	0	0	0	0	0	0	0	0	0
Area 5	1	1	1	1	1	1	1	1	-1	-1
Area 6	0	0	0	0	0	0	1	1	-1	-1
Area 7	0	0	0	1	1	1	1	1	-1	-1

• Number of patients per area (Wei (j)):

Area/district	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6	Area 7
Number of patients	10	30	20	40	20	30	10

Data:

- Homecost (h,i,j):employment cost of one resource h of type i, for the area j,
- Evacost: evacuation cost of one patient to a hospital,
- HV: High value (999,999).

Decision variables:

- Acces (i,j,p): real variable, accessibility of area j using a resource of type i (i.e. liberal nurse or salaried nurse) during the period p,
- X (h,i,j,p): integer variable, quantity of resource h of type i used in area j during the period p,
- Y (j,p): binary variable, it is equal to 1 if the area j is evacuated during the period p, 0 otherwise.

• Objective function:

$$\begin{aligned} \text{Minimiser} (Z) &= \sum_{i=1}^{N} \sum_{h=1}^{K(i)} \sum_{j=1}^{M} \sum_{p=1}^{T} \left(X (h, i, j, p) * \text{Homecost} (h, i, j) \right) &+ \\ \sum_{j=1}^{M} \sum_{p=1}^{T} (Y (j, p) * Wei(j) * (\text{Hospcost} * (T - p + 1) + Evacost)) \end{aligned}$$
(1)

→ We seek to minimize on one hand the visiting costs of patients in non-evacuated areas, and on the other hand the evacuation and hospitalization costs of patients in evacuated areas.

Constraints:

- Acces $(i, j, 1) = 1 \quad \forall i, \forall j \quad (2)$
- Acces $(i, j, p + 1) = Acces (i, j, p) + Evol (i, j, p) \quad \forall i, \forall j, \forall p < T$ (3)

•
$$\sum_{p=1}^{T} Y(j,p) \le 1 \quad \forall j = 1, ..., M$$
 (4)

- $\sum_{h=1}^{K(i)} X(h,i,j,p) \ge Wei(j) * Acces(i,j,p) \left(\sum_{q=1}^{p} Y(j,q)\right) * HV \quad \forall i, \forall j, \forall p \quad (5)$
- $\sum_{j=1}^{M} X(h, i, j, p) \leq Cap(h, i) \forall i, \forall h, \forall p$ (6)
- $\sum_{j=1}^{M} \sum_{p=1}^{T} Y(j,p) * Wei(j) \leq NBeds$ (7)

Results (Cplex 12.6.2)

Period	23 Jan	24 Jan	25 Jan	26 Jan	27 Jan	28 Jan	29 Jan	30 Jan	31 Jan	1 Feb
Area 1										
	10	10	10	10	10	10	10	10	20	10
Area 2										
	30	30	30	30	30	60	90	120	150	120
Area 3										
	20	20	20	20	20	20	20	40	60	40
Area 4										
	40	40	40	40	40	40	40	40	40	40
Area 5										
	20	40	60	80	100	120	0	0	0	0
Area 6										
	30	30	30	30	30	30	30	60	90	60
Area 7										
	10	10	10	10	20	30	40	50	60	50
Total										
	160	180	200	220	250	310	230	320	420	320

- Solution cost: 202 200 €
- Home care cost: 160 200 €
- Evacuation cost: 32 000 €

Prospects

 \rightarrow Dynamic Partitioning Problem combined with an assignment problem

Thank you!

Do you have any questions?

université LUMIÈRE LYON 2

