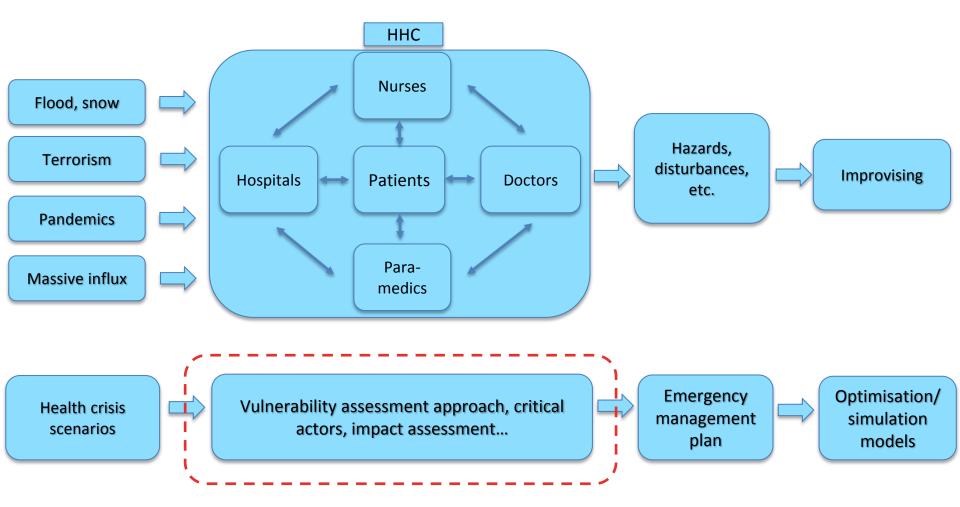


"Home Health Care vulnerability assessment using graph theory and matrix methods"

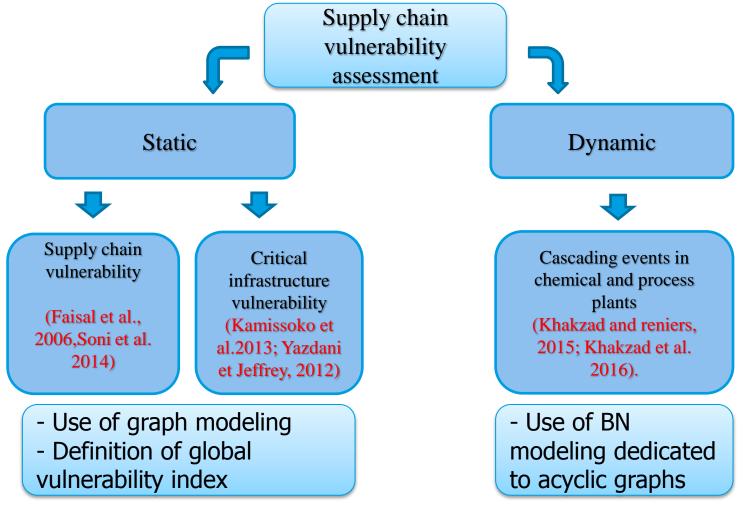
Houssem Barkaoui, Alain Guinet & Tao Wang

Laboratoire Décision et Information Pour les Systèmes de Production

université LUMIÈRE LYON 2

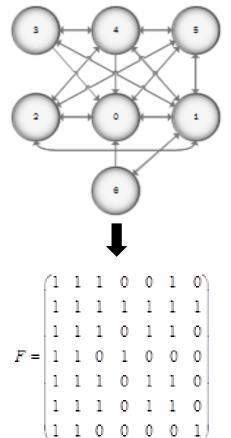


- Context
- State of the art
- Vulnerability assessment approach
- Prospects



Context

State of the art



State of the art

- Define a set of criteria for vulnerability assessment of each actor and flow facing different types of crisis.
- Provide indexes to assess the vulnerability of actors and flows based on actor resilience and flow robustness, using matrix operations that do not necessitate a big computational effort.
- Propose a method to calculate the dynamic vulnerability that takes into account the cascading events in a cyclic graph.

• 1- Digraph modelling:

N°	Acteur			
0	Patients			
1	Call centre			
2	Nurses			
3	Deliverers			
4	Doctors			
5	Hospitals			
6	Collectors			

• 2- Influence matrix:

Rule: « The more the flow is important for the actor (flow consumer), the more its degradation/breakdown has more probability to disrupt the functioning of this actor and the higher the associated value is. »

Verbal judgment	Assigned value (a _{ij})
No importance	0
Very weak	1
Weak	2
Medium	3
Strong	4
Very strong	5

	(0	0.173	0.266	0	0	0.272	0)
	0.157	0.173 0.086	0.200	0.800	0.333	0.272	0.75
	0.263	0.173	0.133	0	0.250	0.181	0
WF =	0.210	0.173 0.130	0	0.200	0	0	0
	0.157	0.173 0.130	0.266	0	0.166	0.181	0
	0.157	0.130	0.133	0	0.250	0.090	0
		0.130	0	0	0	0	0.25)

Actors	0	1	2	3	4	5	6
0	0	4	4	0	0	3	0
1	3	2	3	4	4	3	3
2	5	4	2	0	3	2	0
3	4	3	0	1	0	0	0
4	3	4	4	0	2	2	0
5	3	3	2	0	3	1	0
6	1	3	0	0	0	0	1
Total	19	23	15	5	12	11	4

• **3-** Actors resilience

- Resilience: the capacity to adapt existing resources and skills to new situations and operating Conditions (comfort 1999, Kamissoko, 2013).

Criteria: Insufficiency of Capacity (IC), Lack of preparedness (P), Responsability (R).

- Example: measure of IC (quantitative)

Lack of Resources (LR)
$$\longrightarrow$$
 $R_{IC} = 1 + \frac{LR}{ALR}$

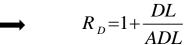
Value of R _{IC}	Value of IC	Activity	
$1 \le R_{IC} \le 2$	R _{IC}	Maintained	
R _{IC} >2	3	Degraded	

• **3-** Actors' resilience

- Example: measure of P (qualitative)
 - **P** = 1: nominal state, without crisis.
 - 1<P<2: the actor is more or less prepared to manage the disturbance (the value 2 can be seen as a threshold).
 - **P** =3: the actor is not prepared at all to manage the disturbance, he/she will improvise.

$$LRS(i,i) = IC(i) * P(i) * R(i) \qquad LRS = \begin{pmatrix} LRS(1,1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & LRS(6,6) \end{pmatrix}$$

4- Flows' robustness


- Robustness: the robustness is the ability to maintain the operations intact while undergoing disruptions (Kamissoko et al. 2013).

Criteria: Lack of quality (Q), Cost (C), Delay (D).

Exemple: Measure of « D »

-D₀: Standard duration of flow delivery, without delay;
-D₁: Duration of flow delivery in times of crisis;
-DL= D1 – D0: Delay
-ADL= (D1-D0)_{acceptable}: Acceptable delay (threshold),

$$D = \begin{cases} 1, \text{ if } R_D < 1; \\ R_D, \text{ if } 1 \le R_D \le 2: \text{ acceptable delay;} \\ 3, \text{ if } R_D > 2: \text{ above the acceptable threshold;} \end{cases}$$

5- Vulnerability assessment

- Vulnerability : vulnerability is the incapacity of a stake to resist to the occurrence of a feared event and to recover efficiently its nominal function during a given period of time (Kamissoko et al. 2013).
 - Flows vulnerability:

FVI(i, j) = LRS(i, i) * LRB(i, j); i, j = 0...6

$$FVI = \begin{pmatrix} LRS(1,1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & LRS(6,6) \end{pmatrix} * \begin{pmatrix} LRB(1,1) & \cdots & LRB(1,6) \\ \vdots & \ddots & \vdots \\ LRB(6,1) & \cdots & LRB(6,6) \end{pmatrix}$$

Actors vulnerability

$$AVI(j) = \sum_{i=0}^{6} wf_{ij} * FVI(i, j); j = 0...6$$

• 6- Dynamic vulnerability assessment

A period (p) is the laps of time required for all flows to circulate once in the network.

Initialization

DFVI(i, j, 1) = FVI(i, j); i, j = 0...6;

DAVI(i,1) = AVI(i); i = 0...6;

Dynamic Flow Vulnerability Index

DFVI(i, j, p+1) = DAVI(i, p) * FVI(i, j); i, j = 0...6;

Dynamic Actor Vulnerability Index

$$DAVI(i, p+1) = \sum_{j=0}^{j=6} wf_{ji} * DAVI(j, p) * FVI(j, i); i, j = 0...6;$$

7- Actors classification

✤ Vulnerability Priority Index (VPI)

$$VPI(i,p) = \frac{DAVI(i,p)}{\sum_{j=0}^{j=6} DAVI(j,p)}; i = 0...6;$$

Période	P=1			P=2		
Indice	DAVI	VPI	Rang	DAVI	VPI	Rang
0	31.181	0.155	3	834.004	0.177	2
1	19.286	0.096	7	504.878	0.107	7
2	23.084	0.115	6	569.553	0.121	4
3	37.440	0.187	1	840.908	0.178	1
4	34.935	0.174	2	803.306	0.170	3
5	23.860	0.119	5	556.528	0.118	5
6	30.182	0.150	4	595.349	0.126	6

- Establish a criteria Weighting (AHP),
- Define classes of actors (critical, influential, dependent, neutral),
- Define mitigation strategies according the actors' classes,
- Define a "redesign" of the HHC supply chain aiming at minimizing the overall vulnerability of the structure.

Thank you!

Do you have any questions?

université LUMIÈRE LYON 2

